

Fachtagung

"Die energetische Zukunft des Wohngebäudebestands. Modelle, Szenarien und Monitoring"

Arbeitskreis Energieberatung 48. Tagung

31. Mai 2012

Programm

09:30	Beginn der Tagu	ng
-------	-----------------	----

09:30 Begrüßung

09:40 Tobias Loga, IWU - Institut Wohnen und Umwelt

> Gebäudetypologie - Werkzeug zur Klassifizierung, Veranschaulichung, Datenstrukturierung, Modellbildung Neufassung der deutschen Wohngebäudetypologie im Rahmen des EU-Projekts TABULA

10:20 Kaffeepause

10:50 Nikolaus Diefenbach, IWU - Institut Wohnen und Umwelt Basisdaten und Szenarien für den Klimaschutz im Wohngebäudebestand

11:35 Nils Thamling, Andreas Kemmler
Prognos AG
Energieszenarien für ein Energiekonzept – Implikationen für den
Wohngebäudebestand

12:10 Peter Mellwig,
ifeu - Institut für Energie- und
Umweltforschung Heidelberg GmbH

Restriktionen für den Wärmeschutz bei der Bestandssanierung

12:45 Mittagspause

13:30 für Interessierte: 60er-Jahre Bürogebäude modernisiert mit Passivhaus-Komponenten - Führung durch das IWU-Haus (Margrit Schaede und Michael Hörner, IWU)

13:50 Dietmar Walberg,

Arbeitsgemeinschaft für zeitgemäßes Bauen, Kiel

Typische Energieverbrauchskennwerte deutscher Wohngebäude

Zusammenhang von Verbrauchskennwerten mit typologischen Merkmalen und dem energetischen Modernisierungszustand

14:30 Uwe Bigalke,

dena - Deutsche Energie-Agentur GmbH

Energiebedarf und -verbrauch: Welche Einsparung bringt eine energetische Sanierung tatsächlich? Auswertungen aus dena-Modellvorhaben und der dena-Energieausweisdatenbank

15:15 Tobias Loga,

IWU - Institut Wohnen und Umwelt

Ambitionierte Ziele nachprüfbar machen
– Ansätze für ein kontinuierliches
Monitoring des Gebäudebestands

15:30 Ausklang

- Kontakte Knüpfen bei Kaffee & Kuchen

16:00 Ende der Tagung

im Anschluss (16:00 bis 18:00) Treffen des Informationskreises "Energiepass & Monitoring" (gesonderte Einladung)

- I. Projektidee / Zielsetzungen
- **Grundbausteine des TABULA-Konzepts** II.
- III. Ergebnisse auf nationaler und europäischer Ebene

I. Projektidee / Zielsetzungen

Herausforderung: "Energieeffizienter Gebäudebestand"

Bewertungen und Entscheidungen auf europäischer, nationaler und regionaler Ebene

> (Regierungen, Kommunen, Förderbanken, Wohnungsunternehmen, Verbände, ...)

Auswirkungen politischer Instrumente, gesetzlicher Anforderungen, Förderung, Modernisierungsstrategien, ... / erzielte Modernisierungsraten, Energieeinsparung, ökonomische Konsequenzen, ... IWU

TABULA Projektidee: Energetische Bewertung des Gebäudebestands auf der Basis typologischer Merkmale

Beispielgebäude:

Abbild eines konkreten realen Gebäudes (Geometrie, Konstruktionselemente) → Demonstration (Energieberatung,

Demonstration (Energieberatung, Gestaltung politischer Instrumente)

Abbild des gesamten Bestands (Energieeffizienz und Häufigkeiten)

→ Modernisierungsstrategien (Auswirkung politischer Instrumente)

Strategische Zielsetzung: Nationale Gebäudetypologie

= öffentliche Datenquelle für Gebäudebestands-Modelle

Hauptziele des Projekts

- Erstellung nationaler Gebäudetypologien auf der Basis eines zwischen den Ländern abgestimmten Konzeptes.
- Anwendungen auf nationaler Ebene zur Demonstration und Veranschaulichung und (wenn möglich) zur Modellierung des Gebäudebestands
- ➤ Vergleich von Gebäudeeigenschaften, Modernisierungsmaßnahmen und Energieeffizienzindikatoren zwischen Ländern.

Vorgehen

- > Zusammentragen von Informationen über bestehende typologische Ansätze in den verschiedenen Ländern (Konzepte, Anwendungsbereiche).
- > Entwickeln einer gemeinsamen Struktur für Gebäudetypologien.
- Füllen der Struktur mit Daten für jedes beteiligte Land in Abstimmung mit nationalen Akteuren, Aufbereitung, Anwendung und Verbreitung.
- Zusammenführen von Statistiken zum Gebäudebestand und zur Wärmeversorgung.
- Realisierung eines Webtools zur Demonstration des Konzepts.

Projektpartner

IWU	Institut Wohnen und Umwelt / Institute for Housing and Environment		Germany
NOA	National Observatory of Athens	≝	Greece
ZRMK	Building and Civil Engineering Institute ZRMK		Slovenia
POLITO	Politecnico di Torino - Department of Energetics		Italy
ADEME	Agence de l'Environnement et de la Maîtrise de l'Energie / French Energy and Environment Agency		France
Energy Action	Energy Action Limited		Ireland
VITO	Flemish Institute of Technological Research		Belgium
NAPE	Narodowa Agencja Poszanowania Energii SA / National Energy Conservation Agency		Poland
AEA	Austrian Energy Agency		Austria
SOFENA	SOFIA ENERGY AGENCY		Bulgaria
MDH	Mälardalens univeristy		Sweden
STU-K	STU-K		Czech Rep.
SBi	Danish Building Research Institute	#	Denmark

Kooperationspartner

IVE	Instituto Valenciano de la Edificación (IVE)	📆 Spain
Univ. Belgrade	Univerzitet u Beogradu - Arhitektonski fakultet / University of Belgrade - Faculty of Architecture	💌 Serbia

Projekt-Koordination: IWU

Projekt-Website: www.building-typology.eu

7

II. Grundbausteine des TABULA-Konzepts

Nationale Wohngebäudetypologien:


- "Haustypenmatrix"
- "Typologie-Broschüre"
- > "Übersichtsblätter für Mustergebäude"

Zwischen den Ländern abgestimmte Methodik:

- > Referenz-Rechenverfahren
- Datenbank mit Datensätzen für Gebäude und Anlagentechnik

Haustypenmatrix ("Building Type Matrix")

Typologie-Broschüre ("National Typology Brochures") mit Gebäude-Übersichtsblättern ("Building Display Sheets")

- Klassifizierung des nationalen Gebäudebestands / Darstellung der Haustypenmatrix
- ➤ Häufigkeiten der Gebäudetypen
- > typische Energieverbrauchswerte exemplarischer Gebäude
- Wirkung von Modernisierungsmaßnahmen: Stufe "konventionell" und "zukunftsweisend"
- Übersichtsblätter für Mustergebäude:Ist-Zustand + 2 Modernisierungspakete

in der jeweiligen Landessprache.

= grundlegende Informationen über den Gebäudebestand + Konsens nationaler Experten und Akteursgruppen über Maßnahmenspektrum und Wirkungen

TABULA Referenz-Rechenverfahren

("Reference Calculation Procedure")

Grundsatz

- einfach (nur die wesentlichen Einflussgrößen)
- transparent (Bilanz leicht nachvollziehbar)
- realistische Kennwerte (typisches Verbrauchsniveau)

Heizwärmebedarf

Referenzberechnung – auf der Basis von EN ISO 13790 / Heizperiodenbilanz; Standardrandbedingungen + jeweilige nationale Klimadaten

Bilanzierung der Heizungsanlage

Referenzberechnung – auf der Basis von EN ISO 15316 / Level B (tabellierte Werte); Tabellen für Wärmeerzeugung, -speicherung, -verteilung und Hilfsenergie – jeweils für Raumwärme und Warmwasser, Werte ermittelt in jedem Land unter Anwendung der geltenden nationalen Bilanzierungsverfahren

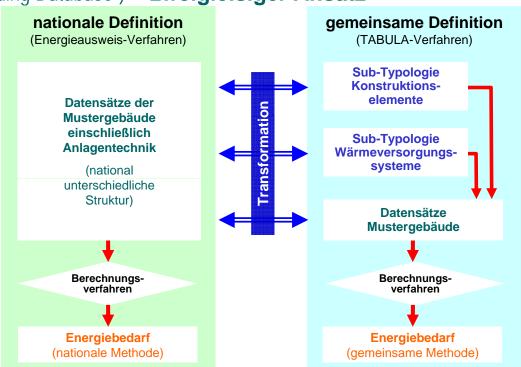
Bewertung der Endenergie

Bestimmung des Primärenergiebedarfs, der CO2-Emissionen, der Energiekosten

Kalibrierung auf das typische Niveau des gemessenen Energieverbrauchs

=> 2 Typen von Energiekennwerten:

- 1. Referenzwerte (für standardisierten Vergleich)
- **2.** auf das typische Niveau von Verbrauchswerten angepasste Rechenwerte (für die realistische Einschätzung von Energiekosten, Energieeinsparung, ...)


IWU

11

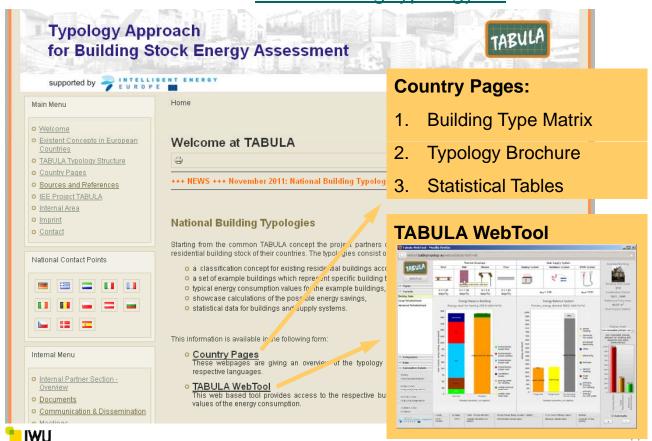
Gemeinsame Datenbank

("Building Database") - zweigleisiger Ansatz

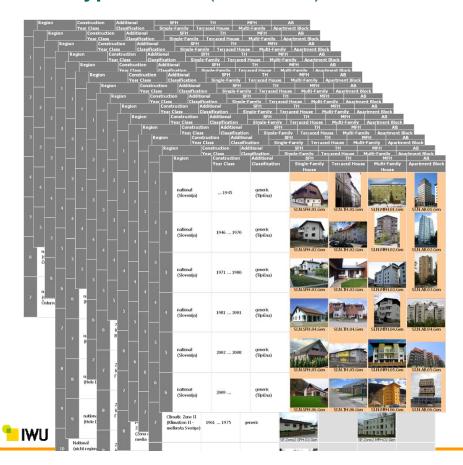
Jeder TABULA-Projektpartner sorgt in seinem Land für die notwendige Transformation von der einen in die andere Systematik. 12

III. Ergebnisse auf nationaler und europäischer Ebene

(Stand: Mai 2012)

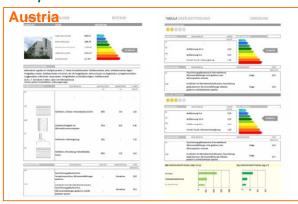

- nationale oder regionale Haustypenmatrix (14 Länder)
- > Gebäudetypologie-Broschüren mit Übersichtsblättern (10 Länder)
- nationale Statistiken über den Gebäudebestand und über Wärmeversorgungssysteme (12 Länder)
- Energiebilanzen nationaler Gebäudebestände (7 Länder)
- weitere Perspekiven: Möglichkeiten zur Übertragung des Konzepts auf den Sektor der Nichtwohngebäude (4 Länder)

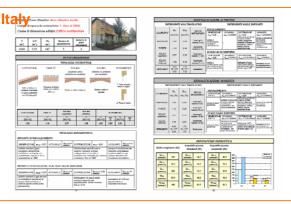
Verbreitung der Ergebnisse über das Internet


13

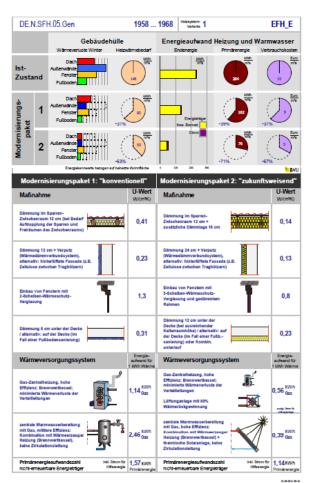
Online Publikation - www.building-typology.eu

Haustypenmatrix (14 Länder)



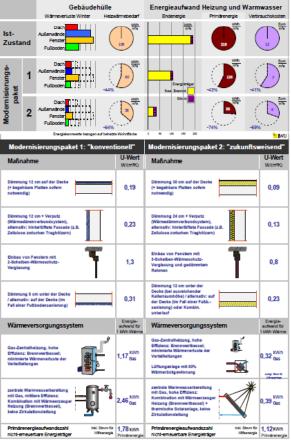

- at Austria
- be Belgium
- cz Czech Rep.
- de Germany
- dk Denmark
- es Spain
- fr France
- gr Greece
- ie Ireland
- it Italy
- pl Poland
- rs Serbia
- se Sweden
- si Slovenia

Typologie-Broschüre – Gebäude-Übersichtsblätter (10 Länder) Beispiele



► Land DE Deutschland ► Typologie Region N - nicht spezifiziert -National ► Größenklasse TH Relhenhaus ("RH") ► Zusatz-Kategorie Gen Grund-Typ Generic beheizte Wohnfläche 107 m² Anzahi Voligeschosse typisch 2-geschossig, mit Settel- oder Pultdach, Dachgeschoss beheidt; Betondecker; Mauerwerk aus Höhlblodstatinen, Göterdiegeln, Holtspansteinen o.B., verputzt; in Nonddeutschland meist zweischslig unweputzt Anzahl Wohnungen ispielgebäude – Ist-Zustand Konstruktion Dach / oberste Geschossdecke Stahlbeton, oberseitig 5 cm Dämmung, Zementestrich Mauerwerk aus Hohibiooksfelnen, Hoohloohziegeln oder Offerziegeln 1,2 3,5 Zweischeiben-isolienerlasung im Hobrahmen (In späteren Jahren modernialert, Original-Fenster nicht mehr erhalten) Fußboden 1,1 Wärmeversorgungssystem Energie-aufwand für 1 kWh Williame Heizsystem 1,50 KWh 2,70 KWh inkl. Strom für 1,89 kWh Hithenergie Primärenergie Wärmeversorgung gesamt

Helzsystem- 1


RH E

1958 ... 1968

detyp Klassifizierung (TABULA Code)

DE.N.TH.05.Gen

DE.N.TH.05.Gen

1958 ... 1968 Helzsystem 1

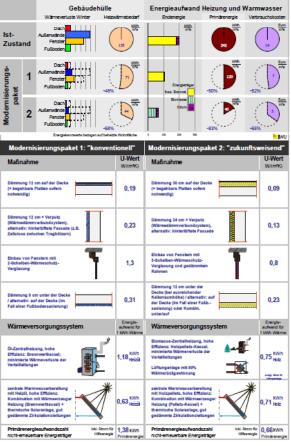
RH_E

74 Zani Wonlangen	32		UWI 👚
	Ве	eispielgebäude – Ist-Zustand	
Konstruktion		Beschreibung	U-Wert W/(m3K)
Dach / oberste Geschossdecke		Betondecke mill 6 om Dämmung Stahlbeton, obersaltig 5 om Dämmung, Zamerlastfich	0,5
Außenwand		Mausrwerk aus Hohibiooksfeinen, Hoohloohziegein oder Gitterziegein	1,2
Fenster	T	Kunststofffender mit Zweischeiben-Isolierverglasung Zweischeiben-Isolanerfaung in Kunststiffshinen (n späteren Jahren modernäler, Orginal-Festerricht mehr arhalter)	3,5
Fußboden	kainen erikaises	Befondeoke mill 1 om Dämmung Gabbeton, 1 om Tittschalddinnung, Zenerleatich	1,1
Wärmeversorgung	gssystem	Beschreibung	Energie- aufwand für 1 kWh Wärme
Heizsystem		Gas-Zenfralheizung, geringe Effizienz: Niederlemperatur- Kecsel, hohe Willimeverkuste der Verteilleitungen	1,22 ^{kWh}
Warmwasser system		zentrale Warmwasserbereitung mit Gas, geringe Effizienz: Kombination mit Warmerszuger Heizung (Heisertemperatur- Kesseel); sohiecht gedänvrife Zirkutationsleitungen	3,82 ^{KWh}
Wärmeversorgung	g gesamt	Primärenergieaufwandszahl Iriki. Strom für nicht-emeuerbare Energieträger Hithenergie	1,64 kWh Primarenergie

.....

DE.N.MFH.05.Gen

DE.N.MFH.05.Gen


DE.N	DE.N.MFH.05.Gen				1968	Helzsystem- 1			MFH_E
		G Wärmeverlust	iebäudehülle eWinter Heizv	ärmebedarf		gieaufwand ndenergie	Heizung Primären		nwasser rauchskosten
Ist- Zusta	Ist- Außenwände Zustand Fußboden Fußboden			130 KWh		inh.	23	ing.	13
Modernisierungs- paket	1	Dach Außenwände Fenster Fußboden		70 KWA		Energieträger bas. Strennst.	46%	IONA IONA	To State
Modernis	2	Dach Dach Dach Dach Dach Dach Dach Dach		MAN AND AND AND AND AND AND AND AND AND A	<u> </u>	abom	75%	-725	
Mark			werte bezogen auf beheizt			200 300			* IWU
Maßr	_		et 1: "konvent	U-Wert W/(m=K)		rnisierungs nahme	paket 2.	zukumitsv	U-Wert W/(m²K)
	hbare I	om auf der Decke Matten sofern		0,19		ing 30 cm auf der hbare Platten sof dig)			0,09
(Wärme alternal	odämmi Uv: hint	om + Verputz verbundsystem), terlüftete Fassade (chen Traghölzern)		0,23	(Wärme	ing 24 cm + Verpo dämmverbundsy Sv: hinterlüftete F	rstem),		0,13
Einbau 2-Schei Verglas	iben-Wi	nstern mit irmeschutz-	1	1,3	3-Sche	von Fenstern mit ben-Wärmeschut ung und gedämm n	2-	1	0,8
/ alterna	ativ: au	m unter der Decke f der Decke (im codensanierung)	***************************************	0,31	Kellern der Der	ing 12 cm unter di bel ausreichende iumhöhe) / atterni ike (im Fall einer I ng) oder Kombin. uf	r ativ: auf Fußb		0,23
Wärn	never	sorgungssys	tem	Energie- aufwand für 1 kWh Warme	Wärn	neversorgun	gssystem		Energie- aufwand für 1 kWh Warme
Effizien	ız: Bren erte Wü	izung, hohe nwertlessel; rmeverluste der n		1,11 KWh	Effizier minimi Verteill Lüftun	ntraiheizung, hoh z: Brennwertkess erte Wärmeverlusi eitungen panlage mit 80% Golgewinnung	el:	Æ	0,43 KWh
mit Gas Kombir Helzun	s, hohe nation r g (Bren	wasserbereitung Effizienz: nit Wärmeerzeuger nwertkessel), gut uusdonsleitungen		1,76 KWh	mit Gar Kombir Heizun thermis	warmwasserber i, hohe Effizienz: sadon mit Wirmee g (Brennwertkessiche Solaraniage, mite Zirkulationsie	erzeuger el) + gut	*	0,63 ^{KWh}
		eaufwandszahl are Energieträger	inki. Strom für Hilfsenergie	1,44 kWh Primarenergie		energieaufwand meuerbare Energ		inki. Strom für Hätsenergie	0,95kWh Primärenergie

► Land DE Deutschland ► Typologie Region N - nicht spezifiziert -Mehrfamilienhaus ("MFH") [E] 1958 ... 1968 ► Zusatz-Kategorie Gen Grund-Typ Generic beheizte Wohnfläche 2845 m² Anzahi Voligeschosse Anzahl Wohnungen 32 Beispielgebäude – Ist-Zustand U-Wert Konstruktion Dach / oberste Geschossdecke Außenwand 1,2 3,5 Zweischeiben-isolienerfasung im Kunststoffshmen (In späteren Jahren modernisiert, Original-Fenster nicht mehr erhalten) Fußboden 1,1 Wärmeversorgungssystem Energie-aufwand für 1 kWh Wärme Heizsystem Öl-Zentralhetzung, geringe Effizienz: Niedertempe Kessel, hohe Wärmeverluste der Verteilleitungen 1,35 KWh 1,09 Strom Inkl. Strom für 1,63 kWh Hitterengie Primärenergie Wärmeversorgung gesamt

Helzsystem- 2 1958 ... 1968

Gebäudetyp Klassifizierung (TABULA Code)

MFH_E

1958 ... 1968 Hebsystem 2

.....

MFH_E

	В	eispielgebäude – Ist-Zustand	
Konstruktion		Beschreibung	U-Wert W/(mR)
Dach / oberste Geschossdecke		Betondeoke mill 6 om Dämmung Stehbeton, obenetig 5 om Dämmung, Zenerleetich	0,5
Außenwand		Mauerwerk aus Hohibiooksteinen, Hoohioohziegein oder Gifferziegein	1,2
Fenster	T	Kunststofffender mit Zweischeiben-Isolierverglasung Zweischeiben-Isolierung im Kunststiffschnen (In späteren Jahren modernales, Original-Pessternicht mehr erhalter)	3,5
Fußboden	riesecenico	Befondeoke mill 1 om Dillmmung Gabbeton, 1 om Tittschaldsfirmung, Zenerskeitich	1,1
Wärmeversorgun	gssystem	Beschreibung	Energie- aufwand für 1 kWh Wikme
Heizsystem	7	Elektro-Nachtspeloherhetzung	1,00 KWh
Warmwasser system	****	dezentral: elektrischer Durchlauferhilizer	1,09 Strom
Wärmeversorgun	g gesamt	Primärenergieaufwandszahl inkl. Strom für nicht-erneuerbare Energieträger Hithenergie	2,61 kWh

DE.N	N.MF	H.05.Gen		1958	1968	Helzsystem- 3		N	IFH_E
		G Wärmeverlust	ebäudehülle eWinter Heizv	ärmebedarf		gieaufwand l	Heizung und \		wasser uchskosten
Ist- Zusta	Ist- Zustand Dach Außenwände Fenzier Fußboden					iovin m/s	The second secon		Euro mila 22
Modern isierungs- paket	Dach Außenwände Fenster Fullboden Pullboden Dach Dach				-	Energisträger bas, Brennst.	54%	-56%	a make
Modernis	2	Dach Außerwände Fenster Fußboden	-68%	d2 MAR		-71%	6 mars		
		Energiekens				100 100 300			* IWU
_	iernis nahm		et 1: "konvent	U-Wert W/(m ^a K)		misierungsp iahme	aket 2: "zuku	inftsw	U-Wert W/(mPK)
	shbare f	em auf der Decke Hatten sofern		0,19		ing 30 cm auf der D hbare Platten sofen dig)			0,09
(Wärme alterna	edämmy Uv: hint	em + Verputz rerbundsystem), erlüftete Fassade (shen Traghölzern)		0,23	(Wärme	ing 24 cm + Verputz dämmverbundsyst tv: hinterlüftete Fas	em),		0,13
Einbau 2-Sche Verglas	(ben-W)	nstern mit irmeschutz-	T	1,3	3-Schel	von Fenstern mit ben-Wärmeschutz- ung und gedämmte n	- 1	BE .	8,0
/ altern	ativ: aut	n unter der Decke f der Decke (im odensanierung)		0,31	Decke (Kellerra der Dec	ng 12 cm unter der bel ausreichender umhöhe) / alternati ke (im Fall einer Fu ng) oder Kombin. uf			0,23
Wärn	never	sorgungssys	tem	Energie- aufward für 1 KWh Wärme	Wärm	neversorgung	ssystem	,	Energie- aufwand für kWh Warme
Effizier	nz: Bren ung inne	izung, hohe nwertkessel, srhalb der		1,18 ^{KWh}	Effizien	se-Zentralheizung, z: Holzpellets-Kess rte Wärmeverluste iltungen	et:	Ľ	I,58 KWh
Etagen Kombil Helzun	helzung nation n	preitung über Gas- , hohe Effizienz: sit Wärmeezeuger nwert-Therme),		1,39 ^{KWh}	mit Holz Kombin Helzung	warmwasserberel spellets, hohe Effizi adon mit Warmeers g (Pellets-Kessel), g nte Zirkulationsleit.	euger o	•61	I,97 KWh

inki. Strom für Hilfsanargie 1,55 kWh Primärenergie nicht-erneuerbare Energieträger

Inkl. Strom für Hätenergie O, 68 kWh Primärenergie

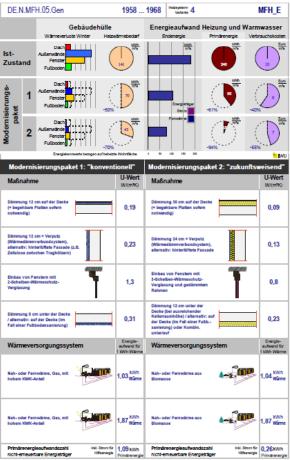
.....

MFH_E

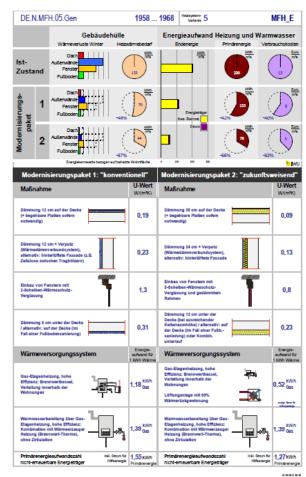
Primärenergieaufwandszahl nicht-emeuerbare Energieträger

DE.N.MFH.05.Gen

.....


DE.N.MFH.05.Gen

► Land DE Deutschland ► Typologie Region - nicht spezifiziert -N ► Größenklasse MFH Mehrfamilienhaus ("MFH") [E] 1958 ... 1968 ► Zusatz-Kategorie Gen Grund-Typ Generic beheizte Wohnfläche 2845 m² Charakterisierung des Gebäudetyps Anzahi Voligeschosse Anzahl Wohnungen 32 Beispielgebäude – Ist-Zustand U-Wert Konstruktion Dach / oberste Geschossdecke Stahlbeton, oberseitig 5 cm Dämmung, Zamentestrich Außenwand 1,2 3,5 Zweischeiben-isolienerfasung im Kunststoffshmen (In späteren Jahren modernisiert, Original-Fenster nicht mehr erhalten) Fußboden ke mit 1 om Dämmung 1,1 Wärmeversorgungssystem Energie-aufwand für 1 kWh Wärme Heizsystem Nah- oder Fernwärme, Gas, ohne KWK 1,09 Wime 1,87 Warme Inkl. Strom für 1,55 kWh Hitterengie Primärenergie Wärmeversorgung gesamt


Helzsystem- 4 1958 ... 1968

Gebäudetyp Klassifizierung (TABULA Code)

MFH_E

Anpassung der berechneten Energiekennwerte an das typische Niveau des realen Energieverbrauchs

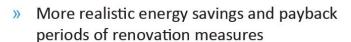
(Mögliche) Gründe für eine systematische Abweichung des berechneten Energiebedarfs von Verbrauchswerten

- ➤ hohe Heizkosten → tendenziell sparsameres Verhalten (bei Modernisierung: "Rebound-Effekt")
- relative Einsparwirkung von Nachtabsenkung und Nicht-Beheizung von Räumen bei schlecht gedämmten Gebäuden größer (teilweise in Reduktionsfaktoren berücksichtigt)
- ➤ Die verschiedenen Rechenansätze und Vereinfachungen bewegen sich tendenziell auf der "sicheren" Seite (Lambda-Werte, Wärmeübergangskoeffizienten, pauschale tabellierte U-Werte, Betriebstemperaturen von Leitungen …)

→ realistische Aussagen über den Energieverbrauch vor und nach Modernisierung

- erforderlich: empirische Erhebungen zum Verhältnis Verbrauch/Bedarf; wenn nicht vorhanden, dann vorläufig Experten-Schätzung
- ➤ Ermittlung der Relation des typischen Verbrauchsniveaus
 - a) zum nationalen Bilanzverfahren

Verbrauchskennwerten

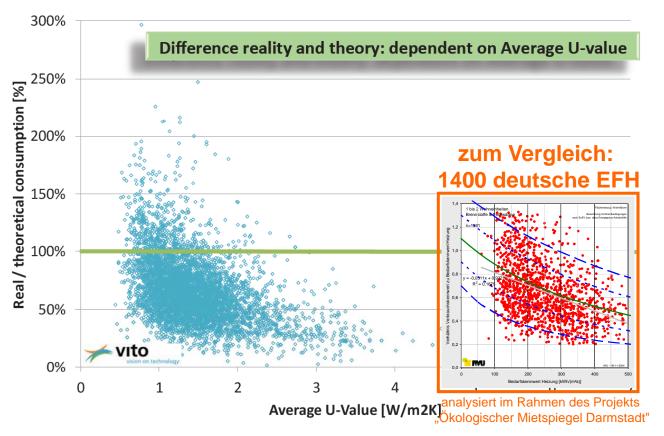

- b) zum TABULA-Referenz-Rechenverfahren
- ➤ Berücksichtigung in den nationalen Typologie-Broschüren / Übersichtsblättern der Mustergebäude (und in anderen Feldern auf nationaler Ebene) sowie im TABULA WebTool (Anforderung: realistische Energiekennwerte)

25

Beispiel aus Belgien:

Belgian brochure with typical housing

» Applied correction factors:



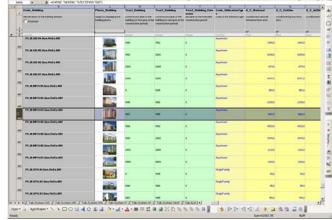
	≤1945	1946-1970	1971-1990	1991-2005	>2005
Detached	34%	38%	45%	60%	100%
Semi-detached	41%	45%	50%	64%	100%
Terraced	42%	45%	52%	67%	100%
Apartment - enclosed	46%	48%	48%	59%	100%
Apartment - exposed	50%	51%	59%	81%	100%
Average correction factor	41%	44%	49%	63%	100%

01 03 12

Energy Advice Procedure databases of Belgian dwellings Eg. 10 000 Walloon dwellings

Verwendeter Anpassungsfunktion für die deutsche Wohngebäudetypologie Genauigkeit Kategorie "C" / Expertenschätzung

central heating systems: fuels and district heating 0,8 adaptation factor o o 0,4 zukünftige Herausforderung: genauere und sicherere Bestimmung delivered energy per m² reference area [kWh/(m²a)]

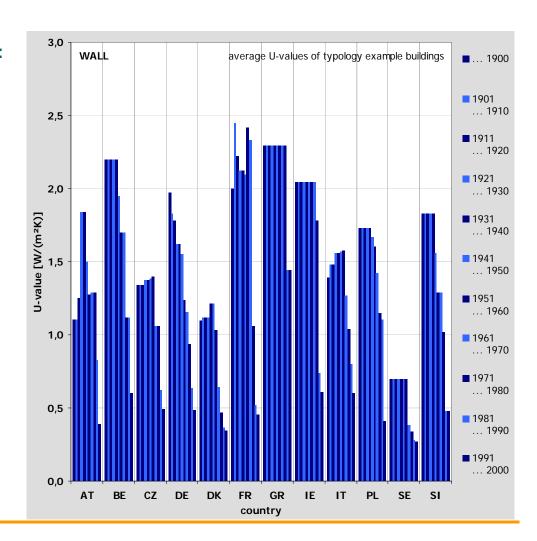


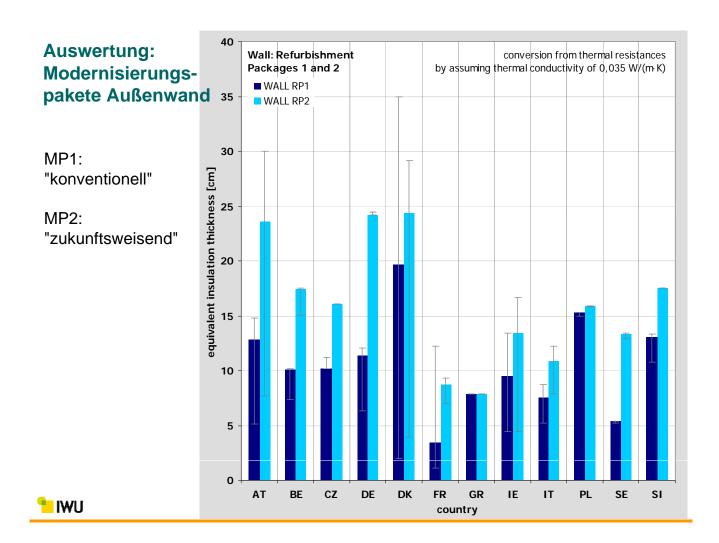
Typische Gebäude und Wärmeversorgungssysteme: TABULA

Datensätze aus 13 Ländern in gemeinsamer

Datenstruktur

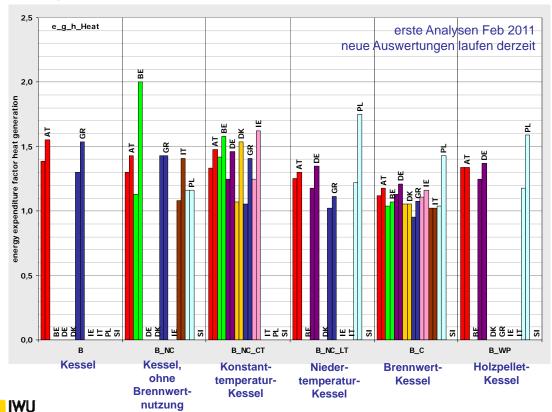
- > 500 Beispielgebäude
- referenzierte Tabellen mit Konstruktionen und Anlagenkomponenten

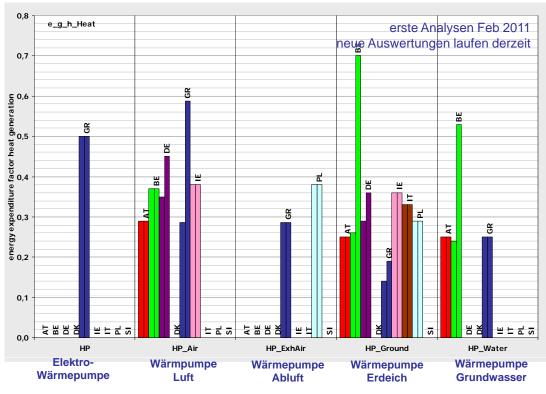



- gemeinsame Excel-Mappe mit allen Daten "TABULA.xls"
- > vereinfachte Version zum Download: "tabula-calculator.xls"

UWI

29


Auswertungen: Beispiel U-Werte Außenwand


Raumheizung – Wärmeerzeuger: Beispiel Kessel

Raumheizung – Wärmeerzeuger: elektrische Wärmepumpen

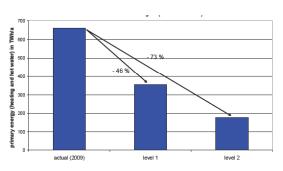
33

Aussagen über den nationalen Gebäudebestand

Statistik-Tabellen – Systematik

Statistical Table	Item
S-1.1	Frequency of building types of the national building stock
S-1.2.1	Percentage of thermally refurbished envelope areas
S-1.2.2	Information on insulation level and window types
S-2.1	Centralisation of the heat supply (for space heating)
S-2.2	Heat distribution and storage of space heating systems
S-2.3	Heat generation of space heating systems
S-2.4	Heat distribution and storage of domestic hot water systems
S-2.5	Heat generation of domestic hot water systems
S-2.6	Solar thermal systems
S-2.7	Ventilation systems
S-2.8	Air-conditioning systems
S-2.9	Control of central heating systems

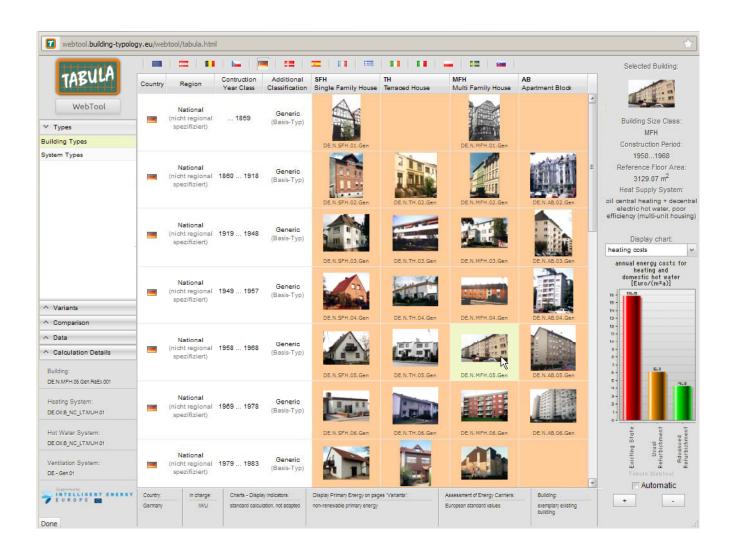
Statistik-Tabellen - Beispiel

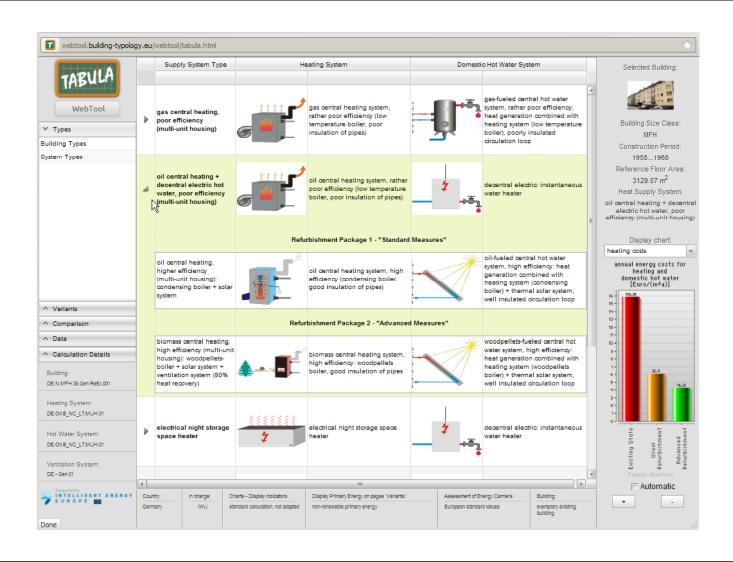

	Country Pa	age Geri	many			Percentage of modernised element are (with improved thermal protection)	а									
								Building classes	SFHI		SFHII	MEI	-11	MEHII		
Statis	stic S-1.1: Frequer	cy of buildir	ng types o	f the natio	nal building	g stock			until 19	78	1979-1994	unt	il 1978	1979-1		
	•	-						walls		20%		7%	2	6%		
	construction	SFH	TH	MFH	AB	sum	fir	roofs / upper floor ceilings		47%		24%	4	8%		
	year class	эгп		r of buildings		sum	II	basement / cellar ceiling		10%		3%	1	1%		
1	1859	370	Hullibe	50			420	windows*		35%		12%		4%		
2	1860 1918	1 040	350	380		1	780	WIIIdows		33 70		1270	-	4.70		
3	1919 1948	1 280	800	460			550	modernisation of buildings erected after	1995 (SFH II	I and MFH	III) nealecte	d				
4	1949 1957	920	480	390			820	_								
5	1958 1968	1 580	670	550	60	2	860	*percentage of thermal protection glasin	g (window in	stallation a	ifter 1995)					
6	1969 1978	1 470	650	320	80	2	520									
7	1979 1983	750	380	160	30	1	320									
8	1984 1994	1 040	540	210			830	Statistic S-1.2.2: Information	on incula	tion love	l and wi	ndow h	maa			
9	1995 2001	1 080	500	200			780	Statistic 5-1.2.2. Information	on insula	tion leve	er arru wi	ndow ty	pes			
10	2002	790	300	70			160									
sum		10 320	4 670	2 790			040	S-1.2.2.1: Insulation thicknesses	of refurb	ished El	ements					
frac	tion	57%	26%	15%	1%	10	00%									
	construction	SFH	TH	MFH	AB	sum	fr	numbers valeted to mederniced elemen	de.							
	year class		numbe	r of dwellings				numbers related to modernised elemer								
1	1859	510		170			680	Average values of insulation layer thickness walls 8,7 cm								
2	1860 1918	1 370	470	1 490			510									
3	1919 1948	1 720	960	1 920		4	860	roofs / upper floor ceilings 12,8 cm								
4	1949 1957	1 240	570	2 000		4	04-4:-4	stic S-2.3: Heat generation of space heating systems								
5	1958 1968	2 150	770	2 800		- 7	Statist	c S-2.3: Heat generation of spa	ace neatir	ng syste	ms					
6	1969 1978	1 930	760	1 500		- 6										
7	1979 1983	940	400	990		2	Heat G	nerator Types								
8	1984 1994 1995 2001	1 230 1 250	590 540	1 060 1 600		-										
10	2002	880	310	510							OCILL MC					
sum		13 220	5 370	14 040		30		ges related to: dwellings in all residential	Juliaings of t		S SEM I - WIF	HIII				
frac		34%	14%	36%		1	Heat Ge	erators for Space Heating		SFH			MFH			
1100	construction	SFH	TH	MFH	AB	sum			SFHI	SFHII	SFH III	MEHI	MFHII	MFH III		
	year class	3111		space (millio		Sum	Heat Ge	erators Energy Carrier								
1	1859	51	9	13				District Heating								
2	1860 1918	155	43	112				District Heating	1,4%	2,3%	3,6%	12,0%	22,2%	11,6%		
3	1919 1948	173	91	134				Building / Apartment Heating								
4	1949 1957	127	57	131	31			Systems								
5	1958 1968	221	76	197	84		Boilers	Gas	43,6%	48,1%	66,4%	52,5%	61,9%	77,9%		
6	1969 1978	213	78	109	127		Dolloro									
7	1979 1983	111	47	69	39			Oil	39,4%			25,6%	12,7%			
8	1984 1994	148	66	76	84			Biomass	4,1%	3,0%	2,9%	2,3%	0,5%			
9	1995 2001	152	62	119				Coal	0,3%	0,0%	0,0%	0,1%	0,0%	0,0%		
10	2002	114	37	41			Heat Pui	np Electricity	1,0%	1,7%	6,1%	1,3%	0,0%	1,4%		
sum		1465	557	1001				Gas	0,0%	0,0%	0,0%	0,0%	0,0%			
frac	tion	43%	16%	29%	11%	1	CHB En		0,0%			0,1%	0,0%			
	construction	SFH	TH	MFH	AB	sum	CHP En									
	year class		TABULA ref	erence area	(million m²)		direct els	ctric Electricity	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%		
1 2	1859	56 171	47	14 123				Room Heating Systems								

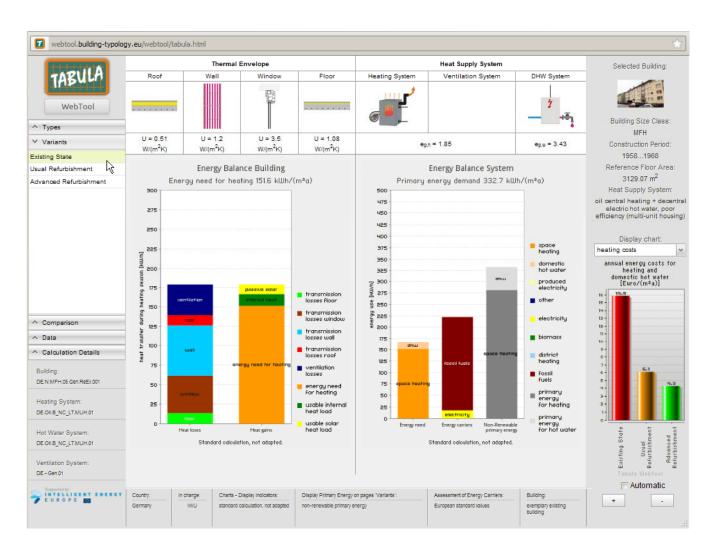
Modelle zur Abbildung des nationalen Gebäudebestands

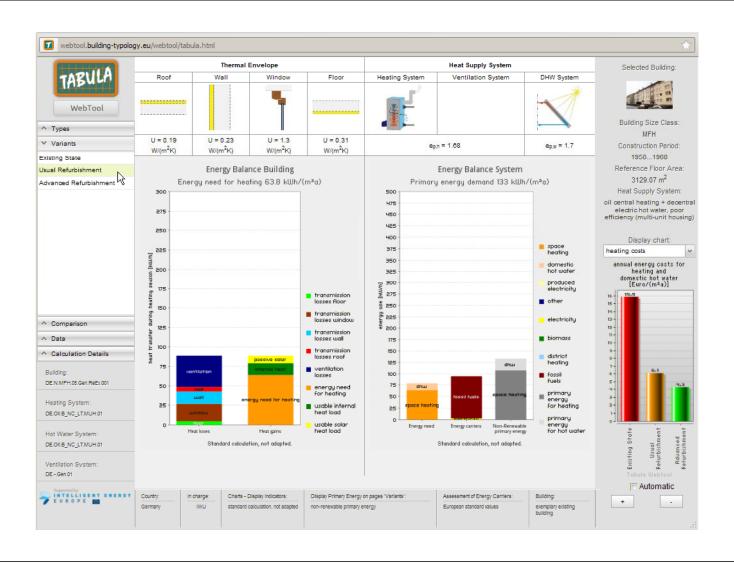
realisiert von 7 Partnern auf der Basis der betreffenden Wohngebäudetypologien

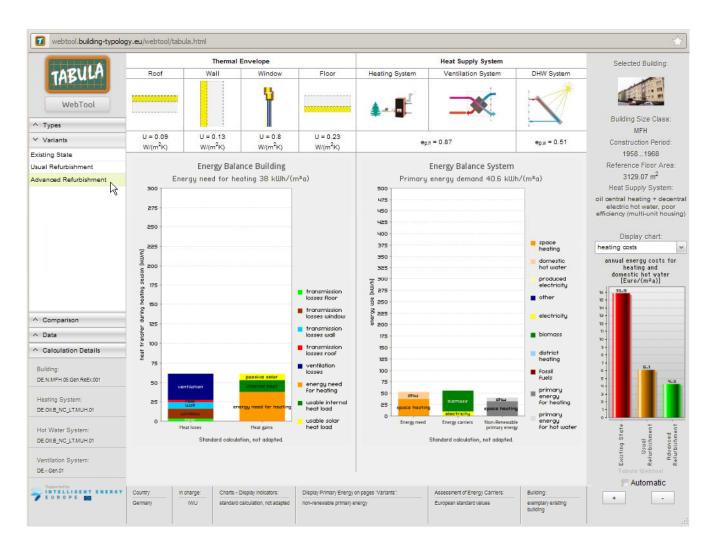
- ➤ Gebäude- und Wärmeversorgungstatistik
- > Information über Sanierungszustand
- ➤ Definition "mittlerer Gebäude"
- > Abbildung des Gesamtenergieverbrauchs des Bestands
- ➤ Reduktionspotenzial durch Maßnahmen

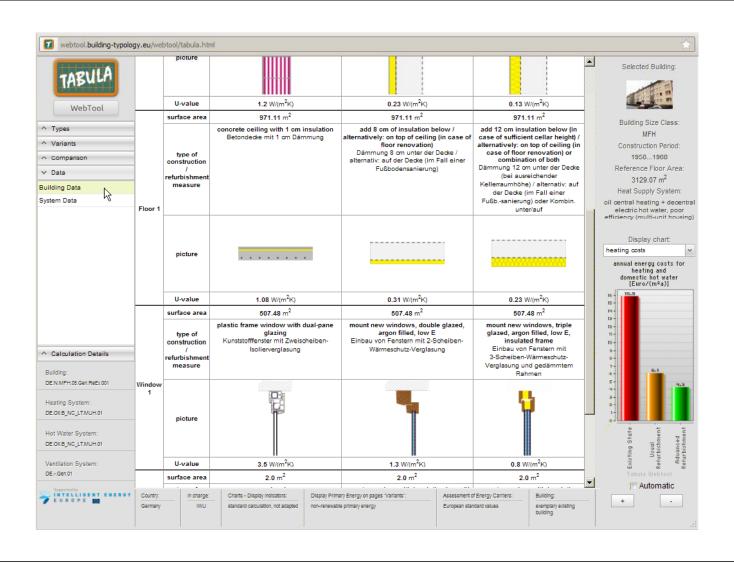

TABULA WebTool

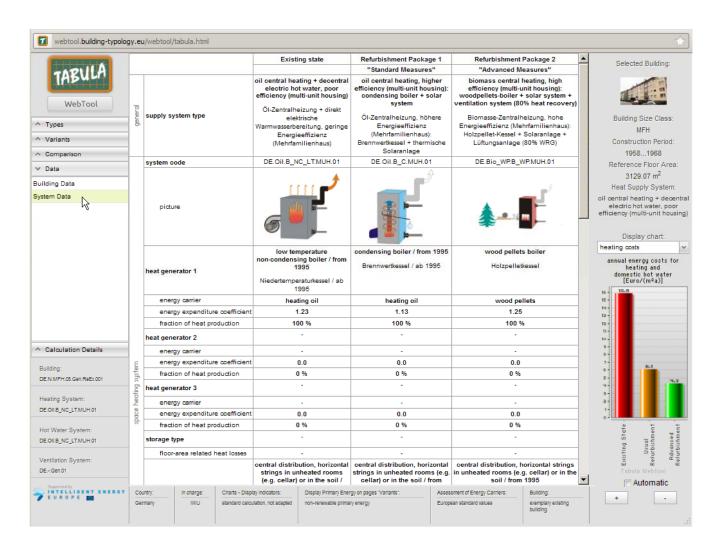


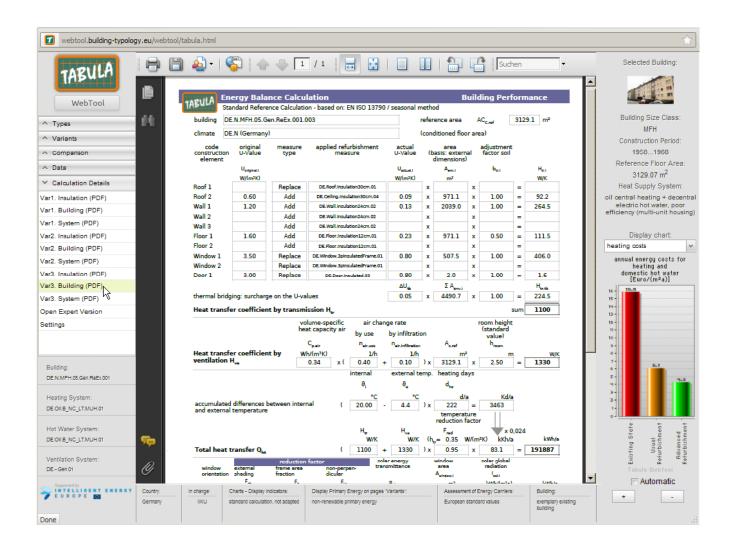

- ➤ Standard-Version zur Veranschaulichung nationaler Wohngebäudetypologien
- Experten-Version als Online-Zugang zu den Datensätzen

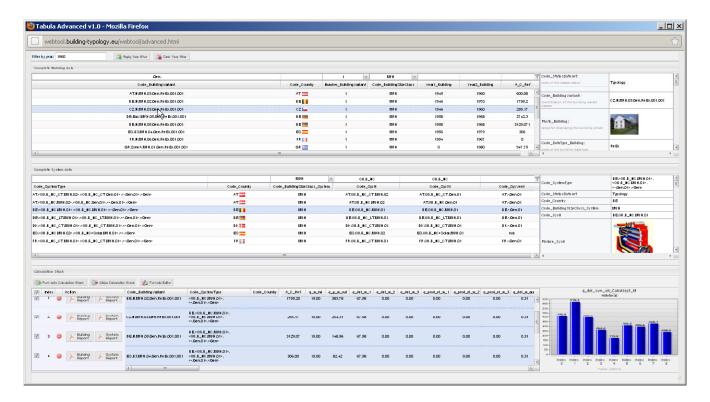



37









WebTool Experten-Version

WebTool als Medium zur Weiterverbreitung des TABULA-Gebäudetypologie-Konzepts

Zielgruppe: Experten, die auf internationaler Ebene arbeiten

einfacher Zugang zu ...

- Informationen über typische Gebäude und Heizungsanlagen, konventionelle und zukunftsweisende Energiesparmaßnahmen
- Informationen über erzielbare Energieeinsparungen
- > Datensätzen von Beispielgebäuden
- ➤ Datensätzen von "mittleren Gebäuden" (in Arbeit) von verschiedenen Ländern.

Verbreitung der Idee ...

- einer einfachen und transparenten Referenzberechnung
- der Kalibrierung der Berechnung mit dem typischen Niveau von Verbrauchskennwerten

47

Resümee: Wichtigste Ergebnisse des TABULA Projekts

- abgestimmtes Schema für die energetische Klassifizierung nationaler Wohngebäudebestände
- ▶ je Land ein Satz von Beispielgebäuden

 → exemplarische Berechnungen (Verbraucherberatung, Auswirkungen politischer Instrumente, ...)
- → gemeinsame Datenstruktur und Berechnungsmethode
 → einfacher Austausch von Informationen,
 Ländervergleich, ...
- ➤ Satz von "mittleren Gebäuden" + zugeordnete Statistiken
 → Basis für Geäudebestandsmodelle (Einsparpotenziale,
 Szenarien, Auswirkungen von politischen Instrumenten, ...)

Resümee für Deutschland: Nutzen von Gebäudetypologien für die energetische Bewertung des Gebäudebestands

- ➤ Gebäudetypologien in Deutschland seit über 20 Jahren in der Praxis auf kommunaler / regionaler / nationaler Ebene (z.B. durch ebök, ifeu, ARENHA/GERTEC, ibek/UTEC, IWU, ...)
- Aufgabe: Akteure zusammenbringen, konkrete Beispielgebäude und Statistiken, Grundkonsens bezüglich des Spektrums der Modernisierungsmaßnahmen und der erzielbaren Verbrauchsminderung

TABULA:

- Aufbereitung der bestehenden deutschen Gebäudetypologie, Beschreibungen und Energiekennwerte für die Mustergebäude
- ➤ methodische Erweiterung: Abgleich der rechnerischen Energiebilanz → "Erwartungswerte des Energieverbrauchs"
- > systematisches Schema für die Erstellung von Gebäudetypologien auf den unterschiedlichsten Ebenen (Wohnungsunternehmen, Stadtquartiere, kommunale Gebäude, Landesbauten, ...)

49

Ambitionierte Ziele nachprüfbar machen – Ansätze für ein kontinuierliches Monitoring des Gebäudebestands

Monitoring der Energieeffizienz im Gebäudesektor Klimaschutz-Versicherung gegen stark ansteigende ziele Reduktion Energiepreise **Energieimport**abhängigkeit nation Energiefinanzielle preis-Förderung gesetzliche zuschlag **Bundes** Anforderungen lände Informationskampagnen **Energiespar-**Energieausweis Instrumente **Energie**beratung Qualitätssicherung Bench-& Zertifizierung marking Verbrauchs Wohnung abrechnung unternehme Verbraucherschutz Marktökonomische **Einze** transparenz **Optimierung** gebäude TABULA

Durchgängiges Monitoring der Modernisierungsprozesse und -erfolge

Grundlage: Basis-Satz von Energieeffizienz-Indikatoren

- Grunddaten (Wohnfläche, Anzahl Vollgeschosse, Beheizungssituation im Keller- und Dachgeschoss, Anzahl Nachbargebäude, Anzahl Wohnungen, ...)
- energetische Qualität der thermischen Hülle (Baujahr, Art der Konstruktion, Jahr/Typ/Umfang/Qualität später umgesetzter Modernisierungen)
- Charakterisierung des Wärmeversorgungssystems (Typen der Wärmeerzeugung, -speicherung, -verteilung für Heizung und Warmwasser, Jahr der Installation / Erneuerung)
- gemessener Energieverbrauch (Energieträger, Verbrauch je Jahr, ...)

Fragebogen Basisdaten Gebäudebestand

IWL

Durchgängiges Monitoring der Modernisierungsprozesse und -erfolge

Umsetzung in den verschiedensten Bereichen

- regelmäßige nationale Befragung (Fortführung "Datenbasis Gebäudebestand" 2013, 2017, …)
- Basisdaten Energieausweis
- differenzierte Benchmarks innerhalb einer transparenten Heizkosten- / Energiekostenabrechnung (ein Anfang: Energiewirtschaftsges. 2011 § 40);
- Mietspiegel-Erhebungen und Einstufung einzelner Gebäude;
- > strategische Entwicklung und Energiemanagement von Gebäude-Portfolios (Bestände von Wohnungsunternehmen, Stadtquartieren, ...);
- Gebäudewertermittlung (z.B. als Grundlage für Kreditvergabe);
- KfW-Förderanträge (Zustand vorher / nachher);
- (Online-)Tools zur Initialberatung
- **>** ...

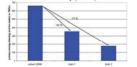
53

Gebäudetypologie und Modernisierungs-Monitoring

Umsetzung z.B. in einem Wohnungsunternehmen

Schritte

- Beispielgebäude / Klassifizierungsschema
- Häufigkeiten Gebäudeund Versorgungstypen
- energetischer Zustand /


 Stand der energetischen
 Modernisierung
- jährliche Raten der energetischen Modernisierung differenziert nach Maßnahmen
- 5 Mustermodernisierungen

Verbrauchs-Benchmarks
abhängig von Gebäudetyp,
Modernisierungszustand
und Wärmeversorgung

Werkzeuge

Typologie-Broschüre

Modell für den Gesamtbestand

Gebäude-Datenbank

Verbrauchs-Datenbank

Meilensteine

Maßnahmenpakete

- > Spektrum der möglichen Maßnahmen
- Veranschaulichung Techniken
- Wirkung auf Energieverbrauch / Heizkosten
- > Investition / ökonomische Bewertung
- grundlegende Verständigung zwischen den verschiedenen Akteuren

Gesamtziel

- anvisierte energetische Qualität
- Umsetzung Klimaschutzziele

notwendige Modernisierungsraten

- Szenarien-Berechnungen: Vergleich Trend <-> Ziel
- Bestimmung der notwendigen Modernisierungsraten für Zielerreichung

Erfolgsberichte

- > Erfolgsberichte Mustermodernisierungen
- Image-Stärkung
- Vertrauen in Maßnahmen
- → Generierung von Nachfrage

... und ähnlich auf vielen weiteren Ebenen: Stadtviertel, kommunale Gebäude, Landesbauten, ...

Herausforderung: Energetische Modernisierung des Gebäudebestands

Klimaschutz- und Energieverbrauchsziele (Motivation und Antrieb)

Definition des Ziels

anschauliche Vermittlung

individuelle
Gebäudetypologien
(Verständigung von
unterschiedlichen Akteuren)

Nachmessen und Steuern

Monitoring:
Energieeffizienz-Indikatoren
(Datengrundlage
+ Methodik)

55