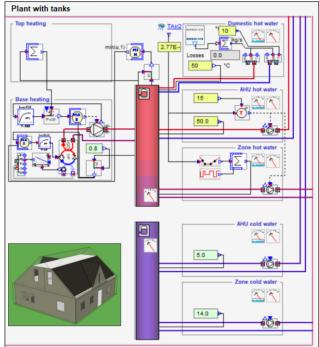
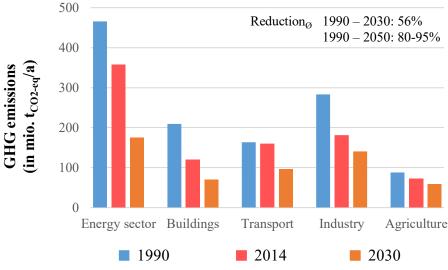

Impact of dynamic CO₂ emission factors for the public electricity supply on the life-cycle assessment of energy efficient residential buildings



André Müller, M.Sc. & Patrick Wörner, M.Sc.

Specific greenhouse gas emissions of the German electricity mix in $g_{\text{CO2-eq.}}/kWh$

Agenda


- 1 Introduction and scope
- 2 Methodology
 - a Dynamic CO₂ emission factors for the German electricity mix
 - b Adaptation of the building LCA method
 - Modelling of future emission factors
- 3 Case study
- 4 Conclusion and outlook

Introduction and scope

Anthropogenic climate change globally threatens the livelihood of millions

 German Energiewende is aiming on the decarbonisation of all sectors of energy consumption by

- increasing efficiency and/or reducing energy demand, respectively
- increasing the share of renewable energy sources in power supply, building sector and mobility
- Volatile character of future power generation as well as power demand are increasing

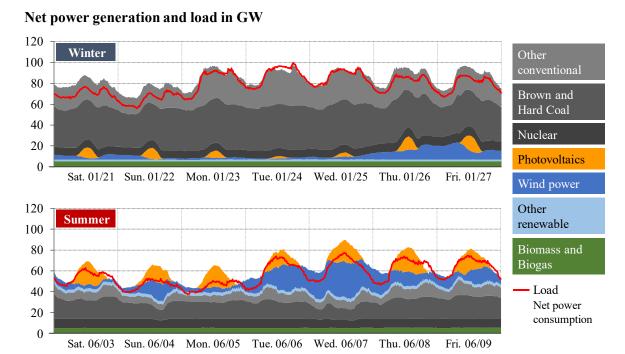


Source: BMUB (2016): Climate Action Plan 2050; Own illustration

2 Methodology

- The goal is the adaptation of established methods for environmental and life-cycle assessment (LCA) to reflect
 - dynamics of future power generation
 - patterns of energy consumption in buildings

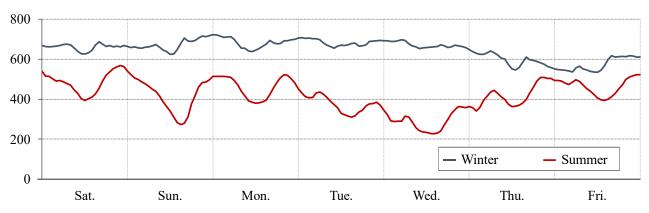
■ The **basis** is the established LCA for buildings according to the standard DIN EN 15978, for instance as implemented in the DGNB certification



Source: Own illustration (based on EN 15978)

Dynamic CO₂ emission factors for the German electricity mix

- Processing of data on power generation from ENTSO-E transparency platform for 2017 and calibration to federal statistics
- Mix of electricity generation technologies and energy carriers in each time step (temporal resolution: 15 minutes)


Source: Wörner et al. (2019): Dynamische CO2-Emissionsfaktoren für den deutschen Strom-Mix

Dynamic CO₂ emission factors for the German electricity mix

 Mean specific emissions per unit of electric energy supplied for each energy carrier and plant type from PROBAS database

Specific greenhouse gas emissions of the German electricty mix in $g_{\rm CO2\text{-}eq.}/kWh$

Source: Wörner et al. (2019): Dynamische CO2-Emissionsfaktoren für den deutschen Strom-Mix (Illustration adapted)

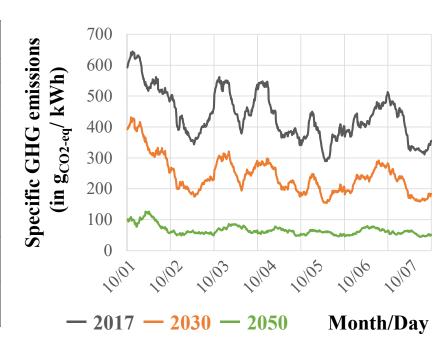
2 b Adaptation of the building LCA method

- The building LCA is modified regarding the use phase (Module B) to allow for
 - a higher time resolution when assessing the energy demand (q_i)
 - an implementation of dynamic grenhouse gas emission factors (f_{GHG,j})

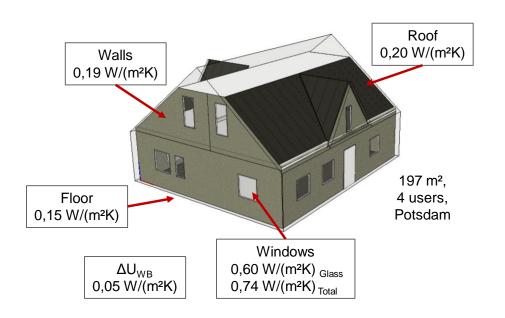
$$c_{\rm GHG,\it i} = q_{\it i} * f_{\rm GHG,\it i} \qquad c_{\rm GHG} \qquad {\rm greenhouse~gas~emissions~caused~by~a~buildings'~energy~demand~(in~g_{\rm CO2-eq.})} \\ q \qquad {\rm energy~demand~(in~kWh)} \\ f_{\rm GHG} \qquad {\rm specific~greenhouse~gas~emissions~(g_{\rm CO2-eq.}/kWh)} \\ i \qquad {\rm timestep~(from~1~to~35,040~for~one~year)} \\ \\$$

The calculation of total emissions over lifetime

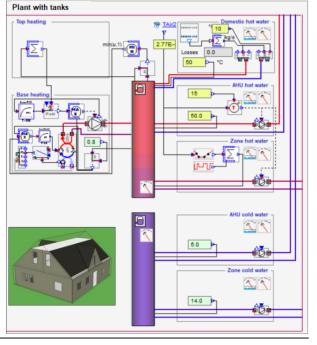
(2)
$$c_{\text{total}} = c_{\text{annual}} * n_{years} = \sum_{i} (c_{\text{GHG},i}) * n_{\text{years}}$$
 estimated service life of the building i timestep (from 1 to 35,040 for one year)



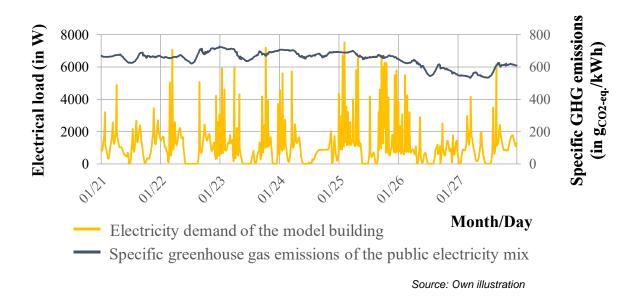
Modelling of future emission factors

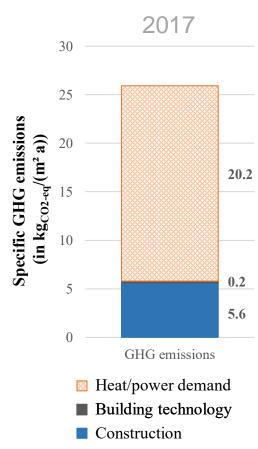

- Future emission factors are calculated on the basis of a 80 % GHG reduction scenario from *Gerbert et al. 2018: "Klimapfade für Deutschland"*
- Profiles for power generation are derived from 2017 load profiles

	2017	2030	2050	
Annual power generation (in TWh)				
Net annual production	619.4	578	627.1	
Photovoltaics	39.3	70	100	
Wind-Onshore	87.6	136	188	
Wind-Offshore	17.6	63	208	
Biomass	46.7	46.8	36.8	
Other renewable	26.3	27.2	27.3	
Conventional fossil	401.9	235	67	
Consumption weighted annual GHG emission factor for the public electricity supply (in g _{CO2-eq.} /kWh)				
direct	524.5	340.6	77.6	
incl. upstream chains	594.1	401.4	119.6	


Source: 2017 - Wörner et. al 2019; 2030 & 2050 - Gerbert et al. 2018

- Residential building model in accordance with German Energy Saving Ordinance (EnEV)*
- Dynamic building simulation using IDA ICE 4.81

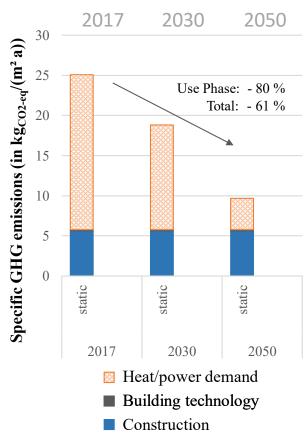

Heat generation				
Air-to-water heat pump				
Nominal power	9.28 kW			
COP / Annual performance	3.5 / 2.95			
ratio	3.37 2.93			
Heat transfer				
Floor heating				
Room temperature				
Heating period	min. 20 °C			
Cooling period	max. 26 °C			


Source: Own illustrations derived from IDA ICE 4.81

*cf. Klauß 2010, Weißmann 2017 for further input parameters

 Simulation gives load profiles and resulting GHG emissions are calculated (temporal resolution: 15 minutes)

 Calculation of the specific GHG emissions of products (A1-3) and the operation phase (B1-7)

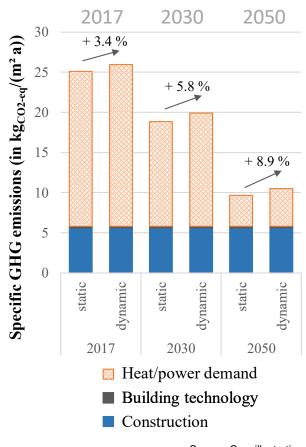


Source: Own illustration

- Comparison of LCA results for
 - 2017, 2030 and 2050 electricity mix
 - static and dynamic LCA approach

Key findings

1) Considerable reduction of GHG emissions



Source: Own illustration

- Comparison of LCA results for
 - 2017, 2030 and 2050 electricity mix
 - static and dynamic LCA approach

Key findings

- 1) Considerable reduction of GHG emissions
- Higher GHG emissions when using dynamic GHG emissions factors
- 3) Increasing assessment gap if share of renewable energy sources increases

Source: Own illustration

Conclusion and outlook

- Renewable energy technologies and energy efficient buildings support the achievement of GHG emission reduction targets until 2050
 - GHG emissions of the construction phase must be reduced as well or compensated by other sectors, respectively
 - LCA results based on dynamic demand inputs and emission profiles suggest that an additional effort is necessary to limit climate change
- A higher degree of dynamic inputs may be used to further enhance
 LCAs and achieve more realistic assessments
 - LCAs with annually decreasing emission factors/profiles in the cause of a buildings' service life
 - Impact of decarbonisation trends on most important construction materials and building components

Impact of dynamic CO₂ emission factors for the public electricity supply on the life-cycle assessment of energy efficient residential buildings

André Müller, M.Sc. & Patrick Wörner, M.Sc.

Thank you for your attention!

André Müller, M.Sc

Institute of Concrete and Masonry Structures, Technische Universtität Darmstadt Institute for Housing and Environment, Darmstadt

a.mueller@massivbau.tu-darmstadt.de a.mueller@iwu.de

Literature

- European Network of Transmission System Operators for Electricity (ENTSO-E) 2018 Transparency Platform (Brussels, online) https://transparency.entsoe.eu
- Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) 2016 Climate Action Plan 2050. Principles and goals of the German government's climate policy (Berlin)
- Gerbert P, Herhold P, Burchardt J, Schönberger S, Rechenmacher F, Kirchner A, Kemmler A, Wünsch M 2018 Klimapfade für Deutschland (München, Berlin, Basel: The Boston Consulting Group GmbH, Prognos AG)
- Klauß S, Mass A 2010 Entwicklung einer Datenbank mit Modellgebäuden für energiebezogene Untersuchungen, insbesondere der Wirtschaftlichkeit. Endbericht (Kassel: Zentrum für Umwelbewusstes Bauen (ed))
- German Environmental Agency (UBA) 2018 Prozessorientierte Basisdaten für Umweltmanagementsysteme "PROBAS" (Dessau-Roßlau, online) http://www.probas.umweltbundesamt.de
- Weißmann C 2017 Effizienter Einsatz erneuerbarer Energieträger in vernetzten Wohnquartieren
 Dissertation (Darmstadt: Institute for Concrete and Masonry Structure, Technische Universität Darmstadt)
- Wörner P, Müller A, Sauerwein D 2019 Dynamische CO₂-Emissionsfaktoren für den deutschen Strom-Mix Bauphysik vol. 41 Issue n° 1 (Weinheim: Ernst & Sohn) pp 17–29