

Target/actual comparison and benchmarking used to safeguard low energy consumption in refurbished housing stocks

Tobias Loga | Guillaume Behem IWU – Institut Wohnen und Umwelt Institute for Housing and Environment Darmstadt | Germany

Methodology and results developed within the project:

MOBASY – Modellierung der Bandbreiten und systematischen Abhängigkeiten des Energieverbrauchs zur Anwendung im Verbrauchscontrolling von Wohngebäudebeständen

In cooperation with:
Bauverein AG, Darmstadt
Wohnbau Gießen GmbH
Nassauische Heimstätte Wohnstadt. Frankfurt am Main

Supported by:

on the basis of a decision by the German Bundestag

Challenges

- 40 million homes in Germany, half of them in multi-family houses (MFH)
- Thereof about one third owned by housing companies
- More than 80% of MFH: central heating systems (fuels, district heating)
- Heating bills: usually part of the ancillary cost paid by the tenants
- Many housing companies put a lot of effort into energy refurbishment activities, driven by the challenges of the climate crisis
- Most of them do not systematically track the applied measures and the energy savings

MOBASY idea

- Develop a concept for target/actual comparison and benchmarking
- Apply the concept in cooperation with housing companies

"Energy Profile Monitoring Indicators"

Data acquisition forms:

Building

System

- Specific set of query variables
- Indicators: physical characteristics of a building that have the biggest impact on its energy performance
- Can in principle be collected by on-site inspections or by asking building owners
- Similar to queries used by German energy housing surveys 2009 and 2016

Building form

Geometrical information:

- Living space
- Number of storeys
- Number of attached buildings
- Heating situation attic and basement

Insulation upgrade:

- Thickness
- Area fraction
- · Year of installation

Window types:

- Number of panes
- Low-e coating
- Year of installation

(Rest = main window type) $(U \le 0.8W/(m^2K))$

Reality-based physical model including uncertainties

Treatment of missing information:

- ► Use averages from the building stock
- ► Increase uncertainty = typical range

Investigated housing stock subsets

Group	Shortcut	Housing company	Datasets / building entities	Apartment blocks	Houses*	Dwellings	Living space
Α	"BV upgraded"	Bauverein AG	53	63	156	1 376	91 308 m²
В	"WBG upgraded"	Wohnbau Gießen	35	35	58	718	47 041 m ²
С	"NHW upgraded"	Nassauische Heimstätte Wohnstadt	41	41	85	822	53 735 m ²
D	"NHW original"		26	26	42	413	27 023 m²
Total			155	165	341	3 329	219 106 m²
Thereof datasets with meter readings Metering scope** <h+w> <h></h></h+w>							
		<h+w></h+w>	85	94	196	2 080	132 667 m²
		<h>></h>	82	90	176	1 958	128 348 m²

^{*) &}quot;House" = a building unit with a separate entrance, staircase and/or address (street + house number)

^{**)} Shortcuts for metering scope: <H+W> = heating and domestic hot water (DHW); <H> = only heating

Buildings with suspiciously high or low energy consumption: Next steps "check and fix"

- Step 1: Check building data
- Step 2: Check heat billing data
- Step 3: On-site inspection of the thermal properties of building fabric and heat supply system
- Step 4: On-site examination of the operating conditions / user behavior

- Improvement of data quality
- Improvement of operation conditions

Coherence of reality-based physical model and actual consumption

Coherence of reality-based physical model and actual consumption

Examination:

Average consumption per interval of calculated energy use

→ systematic deviations?

Average consumption and standard deviation per interval of calculated energy use

Average consumption and standard deviation per interval of calculated energy use

 Rather good coherence (no strong systematic deviation for non-refurbished buildings as known from EPC calculation)

Résumé

Target/actual comparison and benchmarking in housing companies

Methodology: monitoring table, energy profile indicators, reality-based physical model, treatment of missing information, uncertainty assessment <developed>

Application to a collection of datasets of about 150 apartment blocks <done>

- → Reliable physical model: expected energy consumption <yes>
- → Improve data validity <yes> + Improve non-optimal operating conditions <tbd>

Perspectives:

- Extension of database / continuation on annual basis
- Energy management in housing companies (challenge: additional staff)
- Strategic portfolio management towards carbon neutral housing stocks (refurbishment rates / tracking of GHG emission reduction, ...)